Integrality and Symmetry of Quantum Link Invariants

نویسنده

  • THANG T. Q. LE
چکیده

0. Introduction. Quantum invariants of framed links whose components are colored by modules of a simple Lie algebra g are Laurent polynomials in v1/D (with integer coefficients), where v is the quantum parameter and D an integer depending on g. We show that quantum invariants, with a suitable normalization, are Laurent polynomials in v2. We also establish two symmetry properties of quantum link invariants at roots of unity. The first asserts that quantum link invariants, at rth roots of unity, are invariant under the action of the affine Weyl group Wr , which acts on the weight lattice. A fundamental domain of Wr is the fundamental alcove C̄r , a simplex. Let G be the center of the corresponding simply connected complex Lie group. There is a natural action of G on C̄r . The second symmetry property, in its simplest form, asserts that quantum link invariants are invariant under the action ofG if the link has zero linking matrix. The second symmetry property generalizes symmetry principles of Kirby and Melvin (the sl2 case) and Kohno and Takata (the sln case) to arbitrary simple Lie algebra.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the integrality of Witten-Reshetikhin-Turaev 3-manifold invariants

We prove that the SU.(2) Witten-Reshetikhin-Turaev invariant of any 3-manifold with any colored link inside at any root of unity is an algebraic integer. As a byproduct, we get a new proof of the integrality of the SO.(3) Witten-Reshetikhin-Turaev invariant for any 3-manifold with any colored link inside at any root of unity of odd order. DOI: https://doi.org/10.4171/QT/48 Posted at the Zurich ...

متن کامل

Quantum Invariants of 3-manifolds: Integrality, Splitting, and Perturbative Expansion

We consider quantum invariants of 3-manifolds associated with arbitrary simple Lie algebras. Using the symmetry principle we show how to decompose the quantum invariant as the product of two invariants, one of them is the invariant corresponding to the projective group. We then show that the projective quantum invariant is always an algebraic integer, if the quantum parameter is a prime root of...

متن کامل

The Jones polynomial of ribbon links

For every n–component ribbon link L we prove that the Jones polynomial V(L) is divisible by the polynomial V(©n) of the trivial link. This integrality property allows us to define a generalized determinant det V(L) := [V(L)/V(©)](t 7→−1) , for which we derive congruences reminiscent of the Arf invariant: every ribbon link L = K1∪· · ·∪Kn satisfies det V(L) ≡ det(K1) · · · det(Kn) modulo 32, whe...

متن کامل

On Perturbative Psu(n) Invariants of Rational Homology 3-spheres

We extract power series invariants from the quantum PSU(n)-invariants of rational homology 3-spheres. This generalizes a result of Ohtsuki (the n = 2 case) which led him to the definition of finite type invariants of 3-manifolds. The proof uses some symmetry properties of quantum invariants (of links) derived from the theory of affine Lie algebras and the theory of the Kontsevich integral. 0. I...

متن کامل

ar X iv : q - a lg / 9 50 70 01 v 1 4 J ul 1 99 5 Link invariants and Combinatorial Quantization of Hamiltonian Chern

We define and study the properties of observables associated to any link in Σ × R (where Σ is a compact surface) using the combinatorial quantization of hamiltonian Chern-Simons theory. These observables are traces of holonomies in a non commutative Yang-Mills theory where the gauge symmetry is ensured by a quantum group. We show that these observables are link invariants taking values in a non...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999